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Abstract Background/purpose: Bulk-fill resin-based composites (RBCs) are a new class of
restorative materials, and polymerization shrinkage (PS) is concerned due to their single incre-
ment up to 4 mm. The aim of this study was to evaluate the PS and shrinkage stress (SS) of bulk-
fill RBCs in vitro.
Materials and methods: Three bulk-fill RBCs and three conventional non-bulk-fill RBCs were
selected. The PS was determined with Acuvol volumetric shrinkage analyzer by calculating
the specimen volume variation before and after light irradiation. The SS was investigated using
universal testing machine method with a polymethyl methacrylate rod as a bonding substrate.
The force generated during the polymerization process was detected by a load cell linked to a
computer. SS was calculated by dividing the maximum stress force by the area of the rod.
Results: The mean PS of various RBCs ranged from 1.72% to 2.13%. All PS results of bulk-fill
RBCs were comparable to their conventional counterparts. Sonicfill 2 (SF2) and Harmonize
(HM) showed the lowest PS (p < 0.05; Tukey HSD test). Medians of SS results ranged from
0.55 MPa to 0.67 MPa. All SSs of bulk-fill RBCs were comparable to their conventional counter-
parts. SF2 showed significantly lower SS than Tetric N-Ceram (TN) and Tetric N-Ceram Bulk Fill
(TNB) (p < 0.0083; post hoc comparisons with Bonferroni adjustments). A moderate, positive
correlation was observed between PS and SS with Pearson’s correlation (rZ 0.446, pZ 0.013).
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Table 1 Information of materia

Products

Sonicfill 2
Harmonize
Tetric N-Ceram Bulk Fill
Tetric N-Ceram
Filtek Bulk Fill Posterior Restorati
Filtek Z350 XT
Conclusion: Both PS and SS are material dependent. A moderate, positive correlation between
PS and SS is found with new bulk-fill RBCs and their conventional counterparts.
ª 2021 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier
B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).
Introduction

Resin-based composites (RBCs) have gained popularity as
restorative materials due to their aesthetic properties, high
strength and technical insensitivity. When the resin-based
composites are light irradiated and light cured, the van der
Waals spaces between methacrylate monomers convert to
shorter covalent bonds. The volume of resin-based com-
posites shrinks, and stress arises at the bonding interface.1

Many clinical problems, such as reduced bonding strength,
cuspal deflection, enamel cracking, marginal leakage,
postoperative dentine hypersensitivity and secondary
caries, are believed to be related to shrinkage stress
(SS).2e5

To reduce the influence of polymerization shrinkage (PS)
of RBCs during clinical application, the incremental filling
technique is proposed by reducing the C-factor of each
layer.6 Conflicted results on the incremental filling tech-
nique have been reported.7e9 In addition, the incremental
filling technique has other drawbacks, including technical
sensitivity and time consumption.10

Recently, a new class of RBCs called bulk-fill resin
composites has been launched on the market. Claiming a
single increment of up to 4 mm, bulk-fill RBCs aim to make
clinical procedures simpler and more efficient, as well as
fewer technical errors such as voids and impurities between
RBC layers.11 When applied as a large volume, concerns
about the PS of bulk-fill RBCs arise. To address this prob-
lem, new monomer technologies are employed in bulk-fill
RBCs. Urethane dimethacrylate (UDMA) is aromatized to
decrease the volume shrinkage.12 Another modification
with UDMA is increasing the molecular weight. A larger
molecule means a less reactive aliphatic C]C group and
thus less shrinkage. Meanwhile, due to the conformational
flexibility of UDMA, the gel point is delayed, and more
stress can be released.13 Moreover, a new
additionefragmentation chain transfer monomer (AFM) is
introduced into methacrylate-based composites. It rear-
ranges the polymer network and delays the gel point to
release SS.14 Concerning the changes in the chemical
ls investigated in this study.

Abbreviation Filler lo

SF2 81.3/65
HM 81/64.5
TNB 80-81/5
TN 75-77/5

ve FTB 76.5/58
FZX 78.5/63

2

reaction kinetics of new bulk-fill RBCs, investigations on the
PS and SS of bulk-fill RBCs are needed before their wide
clinical use.

The purpose of this study was to evaluate the PS and SS
of bulk-fill RBCs after light irradiation. The null hypotheses
were as follows: there were no significant differences in a)
PS and b) SS between contemporary bulk-fill and non-bulk-
fill RBCs.

Materials and methods

Six RBCs were selected, including three bulk-fill (Sonicfill 2
[SF2], Tetric N-Ceram Bulk Fill [TNB], Filtek Bulk Fill Pos-
terior Restorative [FTB]) and three conventional non-bulk-
fill (Harmonize [HM], Tetric N-Ceram [TN], Filtek Z350 XT
[FZX]) RBCs. Detailed information on the products is listed
in Table 1.

Polymerization shrinkage

Polymerization shrinkage (PS) (n Z 5) was investigated with
a video imaging device (Acuvol Volumetric Shrinkage
Analyzer; Bisco Inc, Schaumburg, IL, USA). Each RBC spec-
imen was shaped into a hemisphere and placed on the
pedestal in front of the CCD camera. Volume before curing
was recorded as V1. Then, a curing unit (BluePhase; Ivoclar
Vivadent, Shaan, Liechtenstein) with the tip close to the
surface of the specimen was activated to irradiate the
specimens for 20 s. The postcuring volume after 5 min was
recorded as V2. The PS was subsequently calculated as
follows:

PS Z ðV1 � V2Þ = V1

Shrinkage stress

Universal testing machine method was used to investigate
the shrinkage stress (SS) (n Z 5). A custom-made accessory
is shown in Fig. 1. The upper part of the accessory was
ad (wt%/vol%) Manufacture Shade Lot number

.5 Kerr A1 6842322
Kerr A3 6901692

5-57 Ivoclar Vivadent IVA V34862
3-55 Ivoclar Vivadent A2 Y10638
.4 3M ESPE A2 N897361
.3 3M ESPE A2 NA89335
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Figure 1 Diagram of the measuring accessory for shrinkage
force.

Table 2 Means and standard deviation (SD) of PS and
medians and interquartile range (IQR) of SS for various
RBCs.

Materials PS/% SS/MPa

SF2 1.85 � 0.06A 0.55 � 0.055A

HM 1.72 � 0.09A 0.59 � 0.100AB

TNB 2.11 � 0.07B 0.65 � 0.020B

TN 2.08 � 0.05B 0.67 � 0.015B

FTB 2.13 � 0.04B 0.63 � 0.035AB

FZX 2.03 � 0.16B 0.58 � 0.030AB

*Different uppercase letters in each row indicate significant
difference between materials for PS (p < 0.05; Tukey HSD test)
and for SS (p < 0.0083; ManneWhitney post hoc comparisons
with Bonferroni adjustments). SF2 (Sonicfill 2), HM (Harmonize),
TNB (Tetric N-Ceram Bulk Fill), TN (Tetric N-Ceram), FTB (Filtek
Bulk Fill Posterior Restorative), FZX (Filtek Z350 XT).
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connected to a load cell (500 N Static Load Cell, Instron,
Norwood, MA, USA), to which a polymethyl methacrylate
rod (5 mm in diameter and 28 mm in length) was screwed.
The lower part of the accessory was fixed on a universal
testing machine (Instron 5969, Norwood, MA, USA), and
another highly transparent polymethyl methacrylate rod
(5 mm in diameter and 13 mm in length) was clamped. The
bottom surface of the longer rod and the top surface of the
shorter rod were roughened with 600-grit silicon carbide
paper and treated with a bonding resin (Clearfil SE Bond
bond, Kuraray Noritake, Tokyo, Japan). Light irradiation
was applied for 10 s for each surface using a curing unit
(BluePhase). The distance between two treated surfaces
was 1 mm. This space allowed the insertion of RBC mate-
rials (19.6 mm3) with a resulting C factor of 2.5. The curing
unit (BluePhase) with an 8 mm diameter tip was positioned
closely to the bottom surface of the shorter rod and acti-
vated for 20 s. The output of the curing unit itself was
950 mW/cm3, while that through the 13 mm rod was
570 mW/cm3, as calibrated by an LED light tester (FB-
M2000A, Fibop Medical Instrument, Foshan, China). Spec-
imen height was kept constant with the use of a non-
contacting video extensometer (AVE, Instron, Norwood,
MA, USA). The forces generated during the polymerization
process were detected by means of the load cell linked to
an attached computer. Data were recorded 5 min after light
irradiation, and the maximum polymerization stress was
calculated by dividing the maximum stress force by the
cross-sectional area of the rod.

Statistical analysis

Statistical analysis was carried out using SPSS 22.0 (IBM SPSS
Inc., Chicago, IL, USA). Before testing the significant dif-
ferences between each group, the ShapiroeWilk test and
Levene test were performed to test the normality and
equality of variance, respectively. PS data were subjected
to one-way analysis of variance and Tukey HSD test at a
significance level of 0.05. A KruskaleWallis nonparametric
analysis of variance was performed followed by
ManneWhitney post hoc comparisons with Bonferroni ad-
justments to test the differences in medians between SS
3

data of different material groups, and the significance level
was adjusted to p < 0.0083. The relationship between PS
and SS was analyzed with Pearson’s correlation at a sig-
nificance level of 0.05.

Results

The PS results are presented in Table 2 and Fig. 2. Mean PS
of various RBCs ranged from 1.72% to 2.13%. The ranking of
PS from highest to lowest was as follows:
FTB Z TNB Z TN Z FZX > SF2 Z HM; (p < 0.05; Tukey HSD
test). All PS results of bulk-fill RBCs were comparable to
their conventional counterparts. The PS of SF2 and HM was
found to be significantly lower than that of the other bulk-
fill and non-bulk-fill groups.

SS data is shown in Table 2 and Fig. 3. Medians of SS
results ranged from 0.55 MPa to 0.67 MPa. All SS results of
bulk-fill RBCs were comparable to their conventional
counterparts. SF2 showed the lowest SS and was signifi-
cantly lower than TN and TNB.

A moderate, positive correlation was observed between
PS and SS with Pearson’s correlation (r Z 0.446,
p Z 0.013).

Discussion

The study investigated the PS and SS of bulk-fill and non-
bulk-fill resin-based composites. Based on the results, the
null hypotheses were rejected.

A variety of techniques, including water/mercury dila-
tometry, the bonded-disc method, cuspal deflection,
specific gravity analysis, electrical strain gauges, micro-CT
and optical measurements, have been employed to
determine the PS of RBCs.15,16 Among those, the Acuvol
video-imaging technique was an easy way to give precise
and reproducible results.17 The mean PS for the bulk-fill
RBCs evaluated ranged from 1.85% to 2.13%, while that
of non-bulk-fill RBCs ranged from 1.72% to 2.08%. Signifi-
cantly lower PS was observed in SF2 and HM than in TNB,
TN, FTB and FZX. The difference can be attributed to
larger filler proportions of SF2 (81.3 wt%/65.5 vol%) and
HM (81 wt%/64.5 vol%). A larger filler proportion indicates



Figure 2 Polymerization shrinkage of RBC materials.
Different uppercase letters over the bar indicate significant
difference between materials (p < 0.05; Tukey HSD test).

Figure 3 Shrinkage stress of RBC materials. Different up-
percase letters over the bar indicate significant difference
between materials (p < 0.0083; ManneWhitney post hoc).
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less conversion of active organic C]C into CeC at a given
volume, resulting in less shrinkage.18 Although an
increased filler proportion was observed in TNB compared
with TN, no significant difference was found concerning
PS. The most likely reason was the improvement in the
degree of conversion of TNB, which was found to have a
moderate, positive and significant correlation in a
4

previous study.17 This was achieved by the addition of the
creative photoinitiator Ivocerin, a dibenzoyl germanium
derivative.19 On the other hand, a decrease in the filler
proportion of FTB did not result in a significant increase in
PS compared with FZX. Shrinkage of FTB may be partially
compensated by new monomers such as aromatic ure-
thane dimethacrylate (AUDMA), which can constrain
shrinkage during polymerization reactions.12

Different from PS, SS is not a material property. Multiple
factors, including the PS and elastic modulus of RBC ma-
terials, degree of monomer conversion, configuration of the
cavity, chemical reaction kinetics and clinical handling
technique, influence SS.20 It is difficult to identify the ef-
fect on SS of an individual factor, since most of them are
interrelated. However, large quantities of laboratory
research have shown evidence of RBC materials generating
SS, and there is consensus that SS is clinically relevant.21

Direct investigation of SS of RBCs can guide clinical selec-
tion and further improvement of materials.

To measure the SS, universal testing machine method
was utilized in this study. It is the most widely used method
to directly quantize SS.21 Medians of SS of all RBCs evalu-
ated ranged from 0.55 MPa to 0.67 MPa. SS of SF2 was
significantly lower than both TN and TNB. A previous study
showed that high inorganic contents were associated with
low SS due to reduced PS with a similar instrumental
design.22 The filler proportion of SF2 was highest in volume,
while that of TN and TNB was the lowest among all RBCs
tested. Meanwhile, a low filler proportion was also
observed in FTB, but the SS value of FTB was comparable to
those of the other groups. New monomers in FTB called
additionefragmentation-chaintransfer monomers (AFMs)
alter the polymerization kinetics by decelerating the re-
action rate.23 AFM can rearrange polymer networks by
breaking and reforming covalent bonds. The gel point was
therefore delayed, and SS was partially released. However,
a limited amount of AFM is added into FTB as a modulator,
causing more than 5 wt% AFM to significantly reduce the
degree of monomer conversion and decrease the postcure
physico-mechanical properties.14

A less intensive correlation between PS and SS was found
in our study (Pearson’s correlation r Z 0.446, p Z 0.013)
than in previous studies based on traditional RBC materi-
als.24e27 A possible explanation is that SS is affected by
multiple factors, the major of which is that polymerization
kinetics have changed with innovations in new monomers,
new photoinitiators and new modulators in recent
years.28,29 Further studies investigating PS and SS with
newly marketing bulk-fill RBCs and the related factors,
including elastic modulus, degree of conversion, and
chemical reaction kinetics, are needed.

Under the limitations of the present study, it could be
concluded that both PS and SS are material dependent. A
moderate, positive correlation between PS and SS is found
with new bulk-fill RBCs and their conventional counterparts.
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